V = 1928.87 (8) Å³

Mo $K\alpha$ radiation

 $0.16 \times 0.14 \times 0.06 \text{ mm}$

19885 measured reflections

2369 independent reflections

2303 reflections with $I > 2\sigma(I)$

 $\mu = 0.10 \text{ mm}^{-1}$

T = 120 K

 $R_{\rm int} = 0.041$

Z = 4

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

tert-Butyl N-{(1S)-1-[(2,4-dihydroxybenzylidene)hydrazinecarbonyl]-2-hydroxyethyl}carbamate ethanol monosolvate

Alessandra C. Pinheiro,^a Marcus V. N. de Souza,^a Edward R. T. Tiekink,^{b*} Solange M. S. V. Wardell^c and Iames L. Wardell^d‡

^aFundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos – Farmanguinhos, R. Sizenando Nabuco, 100, Manguinhos, 21041-250, Rio de Janeiro, RJ, Brazil, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, ^cCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, and ^dCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil

Correspondence e-mail: edward.tiekink@gmail.com

Received 27 January 2011; accepted 30 January 2011

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.004 Å; disorder in solvent or counterion; R factor = 0.036; wR factor = 0.099; data-toparameter ratio = 8.7.

The molecule of the title ethanol solvate, $C_{15}H_{21}N_3O_6 \cdot C_2H_6O_7$ adopts a curved shape; the conformation about the imine bond [N=N = 1.287 (3) Å] is E. The amide residues occupy positions almost orthogonal to each other [dihedral angle = 85.7 (2)°]. In the crystal, a network of $O-H \cdots O$, $O-H \cdots N$ and N-H...O hydrogen bonds leads to the formation of supramolecular arrays in the *ab* plane with the ethanol molecules lying to the periphery on either side. Disorder in the solvent ethanol molecule was evident with two positions being resolved for the C atoms [site occupancy of the major component = 0.612 (10)].

Related literature

For background to the use of L-serine derivatives in antitumour therapy, see: Jiao et al. (2009); Yakura et al. (2007); Takahashi et al. (1988); Sin et al. (1998). For background to Nacylhydrazone derivatives from L-serine for anti-tumour testing, see: Rollas & Küçükgüzel (2007); Terzioğlu & Gürsoy (2003). For related structures, see: Pinheiro et al. (2010); de Souza et al. (2010).

Experimental

Crystal data $C_{15}H_{21}N_3O_6 \cdot C_2H_6O$ $M_{\rm m} = 385.42$ Monoclinic, C2 a = 17.4054 (4) Å b = 8.7266 (2) Åc = 15.0105 (4) Å $\beta = 122.219(2)^{\circ}$

Data collection

Bruker-Nonius Roper CCD camera on *k*-goniostat diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2007) $T_{\min} = 0.897, T_{\max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	H atoms treated by a mixture of
$wR(F^2) = 0.099$	independent and constrained
S = 1.06	refinement
2369 reflections	$\Delta \rho_{\rm max} = 0.61 \text{ e } \text{\AA}^{-3}$
271 parameters	$\Delta \rho_{\rm min} = -0.33 \text{ e } \text{\AA}^{-3}$
7 restraints	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1−H1 <i>o</i> ···N1	0.86 (3)	1.89 (3)	2.643 (3)	147 (3)
$N2-H2n\cdots O3^{i}$	0.86 (3)	1.91 (2)	2.760 (2)	171 (2)
$O2-H2o\cdots O5^{ii}$	0.83 (3)	1.86 (3)	2.669 (3)	165 (3)
$N3-H3n\cdots O4^{iii}$	0.86 (3)	2.08 (3)	2.926 (3)	173 (2)
$O4-H4o\cdots O7^{iv}$	0.83 (1)	1.94 (2)	2.761 (3)	167 (3)
$O7-H7o\cdots O2^{v}$	0.84 (1)	2.05 (2)	2.858 (2)	162 (4)
	1 1	- 40		- 4 \

Symmetry codes: (i) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, -z + 2; (ii) -x, y, -z + 2; (iii) -x + 1, y, -z + 2; (iv) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + 1; (v) -x, y, -z + 1.$

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5793).

[‡] Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

References

Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Farrugia, L. J. (1997). J. Appl. Cryst. **30**, 565.

Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Jiao, X., Wang, L., Xiao, Q., Xie, P. & Liang, X. (2009). J. Asian Nat. Prod. Res. 11, 274–280.

Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Pinheiro, A. C., de Souza, M. V. N., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2010). Acta Cryst. E66, 01004–01005.

Rollas, S. & Küçükgüzel, S. G. (2007). Molecules, 12, 1910-1939.

Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Sin, N., Meng, L., Auth, H. & Crews, C. M. (1998). Bioorg. Med. Chem. 6, 1209–1217.
- Souza, M. V. N. de, Pinheiro, A. C., Tiekink, E. R. T., Wardell, S. M. S. V. & Wardell, J. L. (2010). Acta Cryst. E66, 03253–03254.
- Takahashi, A., Nakamura, H., Ikeda, D., Naganawa, H., Kameyama, T., Kurasawa, S., Okami, Y., Takeuchi, T. & Iitaka, Y. (1988). J. Antibiot. 41, 1568–1574.
- Terzioğlu, N. & Gürsoy, A. (2003). Eur. J. Med. Chem. 38, 633-643.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yakura, T., Yoshimoto, Y., Ishida, C. & Mabuchi, S. (2007). Tetrahedron, 63, 4429-4438.

Acta Cryst. (2011). E67, o581-o582 [doi:10.1107/S1600536811003795]

tert-Butyl *N*-{(1*S*)-1-[(2,4-dihydroxybenzylidene)hydrazinecarbonyl]-2-hydroxyethyl}carbamate ethanol monosolvate

A. C. Pinheiro, M. V. N. de Souza, E. R. T. Tiekink, S. M. S. V. Wardell and J. L. Wardell

Comment

Several *L*-serine derivatives have been found to have potential in anti-tumour therapy, for example, conagenin, a naturally occurring serine derivative, was shown to improve the anti-tumour efficacy of adriamycin and mitomycin C against murine leukemias (Jiao *et al.*, 2009; Yakura *et al.*, 2007). Other *L*-serine derivatives reported as potential new anti-tumour agents include the antibiotic thrazarine, which sensitizes tumour cells to macrophage-mediated cytolysis (Takahashi *et al.*, 1988), and eponemycin, an immunomodulator, which plays a crucial role in tumour progression and metastases by supplying essential nutrients to B16 melanoma cells (Sin *et al.*, 1998). Following on from such reports, we have synthesized some *N*-acylhydrazones derivatives from *L*-serine to use in anti-tumour testing. The choice of *N*-acylhydrazonyl derivatives was suggested by publications indicating that compounds with such groups can aid anti-tumoural activities (Rollas *et al.*, 2007; Terzioğlu *et al.*, 2003). In continuation of on-going structural studies of these compounds (Pinheiro *et al.*, 2010; de Souza *et al.*, 2010), we now report the structure of the ethanol solvate of *tert*-butyl (1*S*)-2-[2-(2,4-dihydroxybenzylidene)hydrazino]-1-(hydroxymethyl)-2-oxoethylcarbamate, (I).

Although the absolute structure of (I), Fig. 1, could not be determined experimentally, the assignment of the *S*-configuration at the C9 atom is based on a starting reagent. The overall conformation of the molecule is curved with the major kink occurring at the C9 atom. The dihydroxybenzene ring is slightly twisted out of the plane of the hydrazine residue with the C2—C1—C7—N1 torsion angle being -8.2 (3) °. The conformation about the N1—C7 imine bond [1.287 (3) Å] is *E*. Each of the carbonyl groups is diagonally opposite the amine group and the dihedral angle formed between the two amide residues is 85.7 (2) °.

As expected with four hydroxyl and two amine donors, there is significant hydrogen bonding operating in the crystal structure, Table 1. While the O1-hydroxy group forms an intramolecular O–H···N hydrogen bond with the hydrazine-N1 atom, the remaining interactions are intermolecular in nature. The O2-hydroxy group forms an O—H···O hydrogen bond with the O5-carbonyl, and the O3-hydroxyl group linked to the chiral centre is connected to the ethanol molecule which in turn forms a hydrogen bond to the O2-hydroxyl group. The N2-amine is connected to the O3-carbonyl and the N3-amine forms a hydrogen bond with the O4-hydroxyl. The result of the hydrogen bonding is the formation of layers of molecules in the *ab* plane sandwiched by ethanol molecules. The layers stack along the *c* axis, Fig. 2.

Experimental

To a stirred solution of *tert*-butyl (1*S*)-2-hydrazino-1-(hydroxymethyl)-2-oxoethylcarbamate (1.0 mmol) in ethanol (10 ml) at room temperature was added 2,4-dihydroxybenzaldehyde (1.05 mmol). The reaction mixture was stirred for 4 h. at 1073 K and concentrated under reduced pressure. The residue was purified by washing with cold ethanol (3 *x* 10 ml), affording the target molecule in 74% yield, m.pt. 423–424 K. The colourless block used in the structure determination was grown from EtOH. ¹H NMR (500 MHz, DMSO-d6) δ (p.p.m.): 11.50 (1*H*, s, NHN), 11.30 (1*H*, s), 9.92 (1*H*, s), 8.30 (1*H*, s, N=CH), 7.26 (1*H*, d, J = 8.4 Hz, H6), 6.80 (1*H*, d, J = 7.7 Hz, NHCH), 6.35–6.30 (1*H*, m, H5), 6.29 (1*H*, s, H3), 4.95 (1*H*, s, OH),

4.02 (1*H*, m, CH), 3.70–3.50 (2*H*, m, CH₂OH); 1.39 (9*H*, s, (CH₃)₃C). ¹³C NMR (125 MHz, DMSO-d6) δ (p.p.m.): 170.8, 160.3, 157.9, 155.2, 141.8, 128.0, 110.4, 107.6, 102.3, 78.0, 61.1, 53.9, 28.2. IR (cm⁻¹; KBr): 3200 (O—H), 1678 (COCH and COO). EM/ESI: [M—H]: 338.3.

Refinement

The C-bound H atoms were geometrically placed (C–H = 0.95–0.99 Å) and refined as riding with $U_{iso}(H) = 1.2-1.5U_{eq}(C)$. The O– and N-bound H atoms were located from a difference map and refined with the distance restraints O–H = 0.84 ± 0.01 and N–H = 0.86±0.01 Å, and with $U_{iso}(H) = zU_{eq}(carrier atom)$; z = 1.5 for O and z = 1.2 for N. Disorder was resolved in the solvent ethanol molecule in that two distinct positions were discerned for the C atoms. From fractional anisotropic refinement, the major component had a site occupancy factor = 0.612 (10). In the absence of significant anomalous scattering effects, 2067 Friedel pairs were averaged in the final refinement. However, the absolute configuration was assigned on the basis of the chirality of the *L*-serine starting material. The maximum and minimum residual electron density peaks of 0.61 and 0.33 e Å⁻³, respectively, were located 0.42 Å and 0.37 Å from the H6 and H16*a* atoms, respectively.

Figures

Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level. The ethanol molecule of solvation has been omitted.

Fig. 2. A view in projection down the *b* axis of the stacking of two-dimensional supramolecular arrays in the *ab* plane in (I) with the O—H···O and N—H···O hydrogen bonding shown as orange and blue dashed lines, respectively.

tert-Butyl *N*-{(1*S*)-1-[(2,4-dihydroxybenzylidene)hydrazinecarbonyl]- 2-hydroxyethyl}carbamate ethanol mono-solvate

Crystal data

$C_{15}H_{21}N_3O_6\cdot C_2H_6O$	F(000) = 824
$M_r = 385.42$	$D_{\rm x} = 1.327 {\rm ~Mg~m}^{-3}$
Monoclinic, C2	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: C 2y	Cell parameters from 4327 reflections
a = 17.4054 (4) Å	$\theta = 2.9 - 27.5^{\circ}$
b = 8.7266 (2) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 15.0105 (4) Å	T = 120 K
$\beta = 122.219 \ (2)^{\circ}$	Block, colourless
$V = 1928.87 (8) \text{ Å}^3$	$0.16 \times 0.14 \times 0.06 \text{ mm}$
Z = 4	

Data collection

Bruker–Nonius Roper CCD camera on κ-goniostat diffractometer	2369 independent reflections
Radiation source: Bruker-Nonius FR591 rotating an- ode CCD	2303 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.041$
Detector resolution: 9.091 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$
φ and ω scans	$h = -22 \rightarrow 22$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2007)	$k = -11 \rightarrow 11$
$T_{\min} = 0.897, \ T_{\max} = 1.000$	$l = -19 \rightarrow 19$
19885 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.099$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.06	$w = 1/[\sigma^2(F_o^2) + (0.0606P)^2 + 1.0679P]$ where $P = (F_o^2 + 2F_c^2)/3$
2369 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$
271 parameters	$\Delta \rho_{max} = 0.61 \text{ e } \text{\AA}^{-3}$
7 restraints	$\Delta \rho_{min} = -0.33 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
01	-0.01014 (11)	0.6314 (2)	0.76103 (14)	0.0306 (4)	
H1o	0.0421 (13)	0.674 (4)	0.796 (2)	0.046*	
02	-0.30367 (9)	0.6766 (2)	0.69839 (12)	0.0259 (3)	
H2o	-0.3330 (19)	0.728 (3)	0.717 (2)	0.039*	

O3	0.27544 (10)	0.67257 (19)	0.95473 (12)	0.0251 (3)	
O4	0.39535 (10)	0.8716 (2)	0.89717 (11)	0.0266 (3)	
H4o	0.3474 (13)	0.853 (4)	0.8402 (14)	0.040*	
05	0.39849 (11)	0.7949 (2)	1.22519 (13)	0.0333 (4)	
O6	0.53955 (10)	0.7219 (2)	1.26444 (11)	0.0267 (4)	
N1	0.11580 (11)	0.8217 (2)	0.89800 (13)	0.0219 (4)	
N2	0.20132 (11)	0.8878 (2)	0.95418 (14)	0.0221 (4)	
H2n	0.2041 (18)	0.9793 (16)	0.976 (2)	0.027*	
N3	0.44121 (11)	0.8160 (2)	1.10779 (13)	0.0206 (4)	
H3n	0.4884 (12)	0.824 (3)	1.104 (2)	0.025*	
C1	-0.04087 (13)	0.8468 (3)	0.83868 (15)	0.0209 (4)	
C2	-0.06834 (13)	0.7128 (2)	0.77631 (15)	0.0204 (4)	
C3	-0.15725 (13)	0.6607 (3)	0.72779 (15)	0.0214 (4)	
H3	-0.1759	0.5722	0.6843	0.026*	
C4	-0.21852 (13)	0.7390 (3)	0.74340 (15)	0.0205 (4)	
C5	-0.19388 (13)	0.8728 (3)	0.80333 (16)	0.0237 (4)	
Н5	-0.2368	0.9262	0.8124	0.028*	
C6	-0.10573 (14)	0.9263 (3)	0.84935 (16)	0.0230 (4)	
H6	-0.0888	1.0186	0.8889	0.028*	
C7	0.05209 (14)	0.9025 (3)	0.89384 (16)	0.0218 (4)	
H7	0.0660	0.9998	0.9273	0.026*	
C8	0.27609 (13)	0.8076 (2)	0.97909 (15)	0.0193 (4)	
C9	0.36197 (12)	0.9053 (2)	1.03518 (15)	0.0192 (4)	
H9	0.3536	0.9876	1.0756	0.023*	
C10	0.37737 (13)	0.9809 (3)	0.95365 (16)	0.0232 (4)	
H10A	0.3228	1.0408	0.9035	0.028*	
H10B	0.4292	1.0528	0.9900	0.028*	
C11	0.45577 (14)	0.7797 (3)	1.20233 (17)	0.0227 (4)	
C12	0.57832 (15)	0.6887 (3)	1.37713 (16)	0.0303 (5)	
C13	0.52980 (18)	0.5534 (4)	1.3883 (2)	0.0379 (6)	
H13A	0.4669	0.5818	1.3629	0.057*	
H13B	0.5608	0.5234	1.4626	0.057*	
H13C	0.5302	0.4672	1.3467	0.057*	
C14	0.5758 (2)	0.8318 (4)	1.4328 (2)	0.0445 (7)	
H14A	0.5988	0.9190	1.4126	0.067*	
H14B	0.6139	0.8166	1.5092	0.067*	
H14C	0.5132	0.8521	1.4127	0.067*	
C15	0.67546 (16)	0.6455 (4)	1.41358 (19)	0.0429 (7)	
H15A	0.6751	0.5548	1.3748	0.064*	
H15B	0.7093	0.6227	1.4891	0.064*	
H15C	0.7045	0.7309	1.4003	0.064*	
07	0.27404 (12)	0.3530 (2)	0.28565 (16)	0.0403 (4)	
H'/o	0.292 (3)	0.443 (2)	0.304 (3)	0.060*	0 (10 (10)
CI6	0.3454 (10)	0.245 (2)	0.3050 (12)	0.0525 (8)	0.612 (10)
H16A	0.3995	0.3029	0.3182	0.063*	0.612 (10)
H16B	0.3241	0.1452 (0)	0.2413	0.063*	0.612 (10)
	0.3/13(3)	0.1452 (9)	0.3940 (6)	0.0495 (14)	0.612 (10)
П1/А 1117D	0.3920	0.2075	0.4574	0.074*	0.612 (10)
п1/В	0.4200	0.0765	0.4040	0.0/4*	0.612 (10)

11170	0.2107	0.0045	0.200	1	0.074*	0 (10 (10)
HI/C	0.3186	0.0845	0.380	1	0.0/4*	0.612 (10)
C18	0.3420 (13)	0.249 (3)	0.303	7 (18)	0.0525 (8)	0.388 (10)
H18A	0.3795	0.2940	0.278	9	0.063*	0.388 (10)
H18B	0.3133	0.1547	0.262	1	0.063*	0.388 (10)
C19	0.4010 (8)	0.2074 (14)	0.415	4 (9)	0.0495 (14)	0.388 (10)
H19A	0.4427	0.2922	0.453	8	0.074*	0.388 (10)
H19B	0.4360	0.1155	0.421	9	0.074*	0.388 (10)
H19C	0.3637	0.1869	0.445	0	0.074*	0.388 (10)
Atomic displaces	nent narameters ((\hat{A}^2)				
monite displacen	U ^{ll}	1 ²²	1,33	L ¹²	1113	L ²³
01	0 0239 (7)	0 0322 (0)	0.0381 (0)	-0.0014 (7)	0.0182(7)	-0.0059 (7)
01	0.0239(7)	0.0322(9)	0.0381(9)	-0.0014 (7)	0.0182(7)	-0.0039(7)
02	0.0133(7)	0.0331(9)	0.0283 (8)	-0.0018 (6)	0.0124(0)	-0.0029(7)
03	0.0231(7)	0.0197 (7)	0.0301 (7)	-0.0008(6)	0.0120(6)	-0.0001(6)
04	0.0205 (7)	0.0384 (9)	0.0223 (7)	0.0012(7)	0.0123 (6)	0.0005 (7)
05	0.02/4 (8)	0.0464 (10)	0.0352 (8)	0.0105 (8)	0.0227(7)	0.0136 (8)
06	0.0211 (7)	0.0410 (10)	0.0188 (7)	0.0088 (7)	0.0111 (6)	0.0070 (7)
NI	0.0152 (7)	0.0239 (9)	0.0251 (8)	-0.0026 (7)	0.0097 (7)	-0.0006 (7)
N2	0.0169 (8)	0.0203 (9)	0.0271 (8)	-0.0025 (7)	0.0104 (7)	-0.0017 (7)
N3	0.0154 (7)	0.0261 (9)	0.0205 (8)	0.0034 (7)	0.0097 (6)	0.0031 (7)
C1	0.0180 (8)	0.0233 (10)	0.0208 (8)	0.0006 (8)	0.0100 (7)	0.0034 (8)
C2	0.0187 (8)	0.0238 (11)	0.0196 (8)	0.0019 (8)	0.0109 (7)	0.0035 (8)
C3	0.0193 (9)	0.0250 (10)	0.0192 (8)	-0.0005 (8)	0.0098 (7)	-0.0001 (8)
C4	0.0147 (8)	0.0272 (10)	0.0188 (8)	0.0007 (8)	0.0084 (7)	0.0042 (8)
C5	0.0188 (9)	0.0300 (12)	0.0246 (9)	0.0041 (8)	0.0132 (8)	0.0026 (8)
C6	0.0218 (9)	0.0245 (10)	0.0247 (9)	0.0009 (8)	0.0137 (8)	-0.0004 (8)
C7	0.0199 (9)	0.0218 (10)	0.0231 (9)	-0.0018 (8)	0.0109 (8)	0.0000 (8)
C8	0.0184 (9)	0.0201 (10)	0.0200 (8)	0.0001 (8)	0.0106 (7)	0.0035 (7)
C9	0.0158 (8)	0.0190 (9)	0.0216 (8)	0.0009 (7)	0.0091 (7)	0.0003 (7)
C10	0.0175 (9)	0.0248 (10)	0.0265 (10)	-0.0001 (8)	0.0113 (8)	0.0034 (8)
C11	0.0200 (9)	0.0255 (10)	0.0230 (9)	0.0020 (8)	0.0116 (8)	0.0028 (8)
C12	0.0291 (11)	0.0417 (13)	0.0195 (9)	0.0073 (10)	0.0127 (8)	0.0072 (9)
C13	0.0358 (12)	0.0448 (15)	0.0369 (13)	0.0103 (11)	0.0219 (11)	0.0141 (11)
C14	0.0570 (17)	0.0470 (16)	0.0246 (11)	0.0099 (14)	0.0184 (12)	0.0012 (11)
C15	0.0255 (11)	0.070 (2)	0.0263 (11)	0.0118 (12)	0.0096 (9)	0.0146 (12)
07	0.0275 (8)	0.0350 (10)	0.0458 (10)	0.0023 (8)	0.0110 (8)	0.0098 (9)
C16	0.0547 (19)	0.0421 (17)	0.0537 (18)	0.0098 (15)	0.0241 (16)	0.0009 (14)
C17	0.047 (3)	0.045 (4)	0.054 (3)	0.014 (2)	0.025 (3)	0.012 (3)
C18	0.0547 (19)	0.0421 (17)	0.0537 (18)	0.0098 (15)	0.0241 (16)	0.0009 (14)
C19	0.047 (3)	0.045 (4)	0.054 (3)	0.014 (2)	0.025 (3)	0.012 (3)
	. /	. /	. /	~ /		~ /
Geometric paran	neters (Å, °)					
O1—C2		1.353 (3)	C9—]	H9	1.0	0000
O1—H10		0.86 (3)	C10–	-H10A	0.9	9900
O2—C4		1.372 (2)	C10-	-H10B	0.9	9900

C12—C13

C12-C14

0.83 (3)

1.232 (3)

O2—H2o

O3—C8

1.512 (4) 1.516 (4)

O4—C10	1.417 (3)	C12—C15	1.521 (3)
O4—H4o	0.833 (10)	C13—H13A	0.9800
O5—C11	1.222 (3)	C13—H13B	0.9800
O6—C11	1.342 (2)	С13—Н13С	0.9800
O6—C12	1.478 (2)	C14—H14A	0.9800
N1—C7	1.287 (3)	C14—H14B	0.9800
N1—N2	1.386 (2)	C14—H14C	0.9800
N2—C8	1.343 (3)	C15—H15A	0.9800
N2—H2n	0.855 (10)	C15—H15B	0.9800
N3—C11	1.340 (3)	C15—H15C	0.9800
N3—C9	1.447 (2)	O7—C18	1.400 (9)
N3—H3n	0.86 (3)	O7—C16	1.460 (8)
C1—C6	1.405 (3)	O7—H7O	0.842 (10)
C1—C2	1.412 (3)	C16—C17	1.450 (12)
C1—C7	1.453 (3)	C16—H16A	0.9900
C2—C3	1.389 (3)	C16—H16B	0.9900
C3—C4	1.388 (3)	C17—H17A	0.9800
С3—Н3	0.9500	С17—Н17В	0.9800
C4—C5	1.394 (3)	С17—Н17С	0.9800
C5—C6	1.385 (3)	C18—C19	1.47 (2)
С5—Н5	0.9500	C18—H18A	0.9900
С6—Н6	0.9500	C18—H18B	0.9900
С7—Н7	0.9500	C19—H19A	0.9800
C8—C9	1.525 (3)	C19—H19B	0.9800
C9—C10	1.535 (3)	С19—Н19С	0.9800
C2—O1—H1o	109 (3)	O5—C11—N3	123.4 (2)
С4—О2—Н2о	108 (2)	O6—C11—N3	110.28 (17)
C4—O2—H2o C10—O4—H4o	108 (2) 109 (2)	O6—C11—N3 O6—C12—C13	110.28 (17) 109.8 (2)
C4—O2—H2o C10—O4—H4o C11—O6—C12	108 (2) 109 (2) 122.20 (16)	O6—C11—N3 O6—C12—C13 O6—C12—C14	110.28 (17) 109.8 (2) 109.9 (2)
C4—O2—H2o C10—O4—H4o C11—O6—C12 C7—N1—N2	108 (2) 109 (2) 122.20 (16) 114.81 (18)	O6—C11—N3 O6—C12—C13 O6—C12—C14 C13—C12—C14	110.28 (17) 109.8 (2) 109.9 (2) 113.6 (2)
C4—O2—H2o C10—O4—H4o C11—O6—C12 C7—N1—N2 C8—N2—N1	108 (2) 109 (2) 122.20 (16) 114.81 (18) 121.30 (18)	O6—C11—N3 O6—C12—C13 O6—C12—C14 C13—C12—C14 O6—C12—C15	110.28 (17) 109.8 (2) 109.9 (2) 113.6 (2) 101.66 (17)
C4—O2—H2o C10—O4—H4o C11—O6—C12 C7—N1—N2 C8—N2—N1 C8—N2—H2n	108 (2) 109 (2) 122.20 (16) 114.81 (18) 121.30 (18) 122.1 (18)	O6—C11—N3 O6—C12—C13 O6—C12—C14 C13—C12—C14 O6—C12—C15 C13—C12—C15	110.28 (17) 109.8 (2) 109.9 (2) 113.6 (2) 101.66 (17) 110.2 (2)
C4—O2—H2o C10—O4—H4o C11—O6—C12 C7—N1—N2 C8—N2—N1 C8—N2—H2n N1—N2—H2n	108 (2) 109 (2) 122.20 (16) 114.81 (18) 121.30 (18) 122.1 (18) 116.4 (18)	06-C11-N3 06-C12-C13 06-C12-C14 C13-C12-C14 06-C12-C15 C13-C12-C15 C14-C12-C15	110.28 (17) 109.8 (2) 109.9 (2) 113.6 (2) 101.66 (17) 110.2 (2) 111.0 (2)
C4—O2—H2o C10—O4—H4o C11—O6—C12 C7—N1—N2 C8—N2—N1 C8—N2—H2n N1—N2—H2n C11—N3—C9	108 (2) 109 (2) 122.20 (16) 114.81 (18) 121.30 (18) 122.1 (18) 116.4 (18) 119.41 (16)	O6—C11—N3 O6—C12—C13 O6—C12—C14 C13—C12—C14 O6—C12—C15 C13—C12—C15 C14—C12—C15 C14—C12—C15 C12—C13—H13A	110.28 (17) 109.8 (2) 109.9 (2) 113.6 (2) 101.66 (17) 110.2 (2) 111.0 (2) 109.5
C4—O2—H2o C10—O4—H4o C11—O6—C12 C7—N1—N2 C8—N2—N1 C8—N2—H2n N1—N2—H2n C11—N3—C9 C11—N3—H3n	108 (2) 109 (2) 122.20 (16) 114.81 (18) 121.30 (18) 122.1 (18) 116.4 (18) 119.41 (16) 116.2 (18)	O6—C11—N3 O6—C12—C13 O6—C12—C14 C13—C12—C14 O6—C12—C15 C13—C12—C15 C14—C12—C15 C12—C13—H13A C12—C13—H13B	110.28 (17) 109.8 (2) 109.9 (2) 113.6 (2) 101.66 (17) 110.2 (2) 111.0 (2) 109.5
C4—O2—H2o C10—O4—H4o C11—O6—C12 C7—N1—N2 C8—N2—H1 C8—N2—H2n C11—N3—C9 C11—N3—H3n C9—N3—H3n	108 (2) 109 (2) 122.20 (16) 114.81 (18) 121.30 (18) 122.1 (18) 116.4 (18) 119.41 (16) 116.2 (18) 118.0 (19)	O6—C11—N3 O6—C12—C13 O6—C12—C14 C13—C12—C14 O6—C12—C15 C13—C12—C15 C14—C12—C15 C14—C12—C15 C12—C13—H13A C12—C13—H13B H13A—C13—H13B	110.28 (17) 109.8 (2) 109.9 (2) 113.6 (2) 101.66 (17) 110.2 (2) 111.0 (2) 109.5 109.5
C4—O2—H2o C10—O4—H4o C11—O6—C12 C7—N1—N2 C8—N2—H2n N1—N2—H2n C11—N3—C9 C11—N3—H3n C9—N3—H3n C6—C1—C2	108 (2) 109 (2) 122.20 (16) 114.81 (18) 121.30 (18) 122.1 (18) 116.4 (18) 119.41 (16) 116.2 (18) 118.0 (19) 118.39 (18)	O6—C11—N3 O6—C12—C13 O6—C12—C14 C13—C12—C14 O6—C12—C15 C13—C12—C15 C14—C12—C15 C12—C13—H13A C12—C13—H13B H13A—C13—H13B C12—C13—H13C	110.28 (17) 109.8 (2) 109.9 (2) 113.6 (2) 101.66 (17) 110.2 (2) 111.0 (2) 109.5 109.5 109.5
C4—O2—H2o C10—O4—H4o C11—O6—C12 C7—N1—N2 C8—N2—N1 C8—N2—H2n N1—N2—H2n C11—N3—C9 C11—N3—H3n C9—N3—H3n C6—C1—C2 C6—C1—C7	108 (2) 109 (2) 122.20 (16) 114.81 (18) 121.30 (18) 122.1 (18) 116.4 (18) 119.41 (16) 116.2 (18) 118.0 (19) 118.39 (18) 119.2 (2)	06—C11—N3 06—C12—C13 06—C12—C14 C13—C12—C14 06—C12—C15 C13—C12—C15 C14—C12—C15 C12—C13—H13A C12—C13—H13B H13A—C13—H13B C12—C13—H13C H13A—C13—H13C	110.28 (17) 109.8 (2) 109.9 (2) 113.6 (2) 101.66 (17) 110.2 (2) 111.0 (2) 109.5 109.5 109.5 109.5
C4—O2—H2o C10—O4—H4o C11—O6—C12 C7—N1—N2 C8—N2—H1 C8—N2—H2n C11—N3—C9 C11—N3—H3n C6—C1—C2 C6—C1—C7 C2—C1—C7	108 (2) 109 (2) 122.20 (16) 114.81 (18) 121.30 (18) 122.1 (18) 116.4 (18) 119.41 (16) 116.2 (18) 118.0 (19) 118.39 (18) 119.2 (2) 122.35 (18)	06-C11-N3 06-C12-C13 06-C12-C14 C13-C12-C14 06-C12-C15 C13-C12-C15 C14-C12-C15 C12-C13-H13A C12-C13-H13B H13A-C13-H13B C12-C13-H13C H13B-C13-H13C	110.28 (17) 109.8 (2) 109.9 (2) 113.6 (2) 101.66 (17) 110.2 (2) 111.0 (2) 109.5 109.5 109.5 109.5 109.5
C4—O2—H2o C10—O4—H4o C11—O6—C12 C7—N1—N2 C8—N2—N1 C8—N2—H2n C11—N3—C9 C11—N3—H3n C9—N3—H3n C6—C1—C2 C6—C1—C7 C2—C1—C7 O1—C2—C3	108 (2) 109 (2) 122.20 (16) 114.81 (18) 121.30 (18) 122.1 (18) 116.4 (18) 119.41 (16) 116.2 (18) 118.0 (19) 118.39 (18) 119.2 (2) 122.35 (18) 117.67 (19)	06-C11-N3 06-C12-C13 06-C12-C14 C13-C12-C14 06-C12-C15 C13-C12-C15 C14-C12-C15 C12-C13-H13A C12-C13-H13B H13A-C13-H13B C12-C13-H13C H13B-C13-H13C H13B-C13-H13C C12-C14-H14A	110.28 (17) 109.8 (2) 109.9 (2) 113.6 (2) 101.66 (17) 110.2 (2) 111.0 (2) 109.5 109.5 109.5 109.5 109.5 109.5
C4—O2—H2o C10—O4—H4o C11—O6—C12 C7—N1—N2 C8—N2—N1 C8—N2—H2n C11—N3—C9 C11—N3—C9 C11—N3—H3n C6—C1—C2 C6—C1—C2 C6—C1—C7 O1—C2—C3 O1—C2—C1	108 (2) 109 (2) 122.20 (16) 114.81 (18) 121.30 (18) 122.1 (18) 116.4 (18) 119.41 (16) 116.2 (18) 118.0 (19) 118.39 (18) 119.2 (2) 122.35 (18) 117.67 (19) 121.84 (18)	06-C11-N3 06-C12-C13 06-C12-C14 C13-C12-C14 06-C12-C15 C13-C12-C15 C14-C12-C15 C12-C13-H13A C12-C13-H13B H13A-C13-H13B C12-C13-H13C H13B-C13-H13C H13B-C13-H13C C12-C14-H14A C12-C14-H14B	110.28 (17) 109.8 (2) 109.9 (2) 113.6 (2) 101.66 (17) 110.2 (2) 111.0 (2) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5
C4-O2-H20 $C10-O4-H40$ $C11-O6-C12$ $C7-N1-N2$ $C8-N2-H2n$ $N1-N2-H2n$ $C11-N3-C9$ $C11-N3-H3n$ $C9-N3-H3n$ $C6-C1-C2$ $C6-C1-C7$ $C2-C1-C7$ $O1-C2-C3$ $O1-C2-C1$ $C3-C2-C1$	108 (2) 109 (2) 122.20 (16) 114.81 (18) 121.30 (18) 122.1 (18) 116.4 (18) 119.41 (16) 116.2 (18) 118.0 (19) 118.39 (18) 119.2 (2) 122.35 (18) 117.67 (19) 121.84 (18) 120.49 (18)	06-C11-N3 06-C12-C13 06-C12-C14 C13-C12-C14 06-C12-C15 C13-C12-C15 C14-C12-C15 C12-C13-H13A C12-C13-H13B H13A-C13-H13B C12-C13-H13C H13B-C13-H13C H13B-C13-H13C C12-C14-H14B H14A-C14-H14B	110.28 (17) 109.8 (2) 109.9 (2) 113.6 (2) 101.66 (17) 110.2 (2) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5
$\begin{array}{c} C4-O2-H2o\\ C10-O4-H4o\\ C11-O6-C12\\ C7-N1-N2\\ C8-N2-N1\\ C8-N2-H2n\\ N1-N2-H2n\\ C11-N3-C9\\ C11-N3-C9\\ C11-N3-H3n\\ C9-N3-H3n\\ C6-C1-C2\\ C6-C1-C2\\ C6-C1-C7\\ C2-C1-C7\\ O1-C2-C3\\ O1-C2-C1\\ C3-C2-C1\\ C3-C2-C1\\ C2-C3-C4\\ \end{array}$	108 (2) 109 (2) 122.20 (16) 114.81 (18) 121.30 (18) 122.1 (18) 116.4 (18) 119.41 (16) 116.2 (18) 118.0 (19) 118.39 (18) 119.2 (2) 122.35 (18) 117.67 (19) 121.84 (18) 120.49 (18) 119.5 (2)	06-011-N3 06-012-013 06-012-014 06-012-014 06-012-015 013-012-015 014-012-015 012-013-H13A 012-013-H13B 012-013-H13B 012-013-H13C 013A-013-H13C 013B-013-H13C 013B-013-H13C 012-014-H14A 012-014-H14B 012-014-H14B 012-014-H14B 012-014-H14C	110.28 (17) 109.8 (2) 109.9 (2) 113.6 (2) 101.66 (17) 110.2 (2) 111.0 (2) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5
$\begin{array}{c} C4-O2-H20\\ C10-O4-H40\\ C11-O6-C12\\ C7-N1-N2\\ C8-N2-N1\\ C8-N2-H2n\\ N1-N2-H2n\\ C11-N3-C9\\ C11-N3-C9\\ C11-N3-H3n\\ C9-N3-H3n\\ C6-C1-C2\\ C6-C1-C7\\ C2-C1-C7\\ O1-C2-C3\\ O1-C2-C1\\ C3-C2-C1\\ C3-C2-C1\\ C2-C3-C4\\ C2-C3-H3\\ \end{array}$	108 (2) 109 (2) 122.20 (16) 114.81 (18) 121.30 (18) 122.1 (18) 116.4 (18) 119.41 (16) 116.2 (18) 118.0 (19) 118.39 (18) 119.2 (2) 122.35 (18) 117.67 (19) 121.84 (18) 120.49 (18) 119.5 (2) 120.3	06-011-N3 06-012-013 06-012-014 06-012-014 06-012-015 013-012-015 014-012-015 012-013-113A 012-013-113B 113A-013-113B 113A-013-113C 113B-013-113C 113B-013-113C 113B-013-113C 113B-013-113C 113B-013-113C 113B-013-113C 113B-013-113C 113B-013-113C 113B-013-113C 113B-013-113C 113B-013-113C 113B-013-113C 113B-013-113C 113B-013-113C 012-014-114B 114A-014-114C 114A-014-114C	110.28 (17) 109.8 (2) 109.9 (2) 113.6 (2) 101.66 (17) 110.2 (2) 111.0 (2) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5
$\begin{array}{c} C4-O2-H20\\ C10-O4-H40\\ C11-O6-C12\\ C7-N1-N2\\ C8-N2-N1\\ C8-N2-H2n\\ N1-N2-H2n\\ C11-N3-C9\\ C11-N3-C9\\ C11-N3-H3n\\ C9-N3-H3n\\ C6-C1-C2\\ C6-C1-C7\\ C2-C1-C7\\ O1-C2-C3\\ O1-C2-C1\\ C3-C2-C1\\ C3-C2-C1\\ C2-C3-H3\\ C4-C3-H3\\ \end{array}$	108 (2) 109 (2) 122.20 (16) 114.81 (18) 121.30 (18) 122.1 (18) 116.4 (18) 119.41 (16) 116.2 (18) 118.0 (19) 118.39 (18) 119.2 (2) 122.35 (18) 117.67 (19) 121.84 (18) 120.49 (18) 119.5 (2) 120.3 120.3	06-011-N3 06-012-013 06-012-014 06-012-014 06-012-015 013-012-015 014-012-015 012-013-H13A 012-013-H13B 113A-013-H13B 113A-013-H13C 113B-013-H13C 113B-013-H13C 113B-013-H13C 113B-013-H13C 113B-013-H13C 113B-013-H13C 113B-013-H13C 113B-013-H13C 112-014-H14B 114A-014-H14B 114A-014-H14C 114B-014-H14C	110.28 (17) 109.8 (2) 109.9 (2) 113.6 (2) 101.66 (17) 110.2 (2) 111.0 (2) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5
C4-O2-H20 $C10-O4-H40$ $C11-O6-C12$ $C7-N1-N2$ $C8-N2-N1$ $C8-N2-H2n$ $N1-N2-H2n$ $C11-N3-C9$ $C11-N3-C9$ $C11-N3-H3n$ $C9-N3-H3n$ $C6-C1-C2$ $C6-C1-C7$ $C2-C1-C7$ $O1-C2-C3$ $O1-C2-C1$ $C3-C2-C1$ $C3-C2-C1$ $C2-C3-H3$ $C4-C3-H3$ $O2-C4-C3$	108 (2) $109 (2)$ $122.20 (16)$ $114.81 (18)$ $121.30 (18)$ $122.1 (18)$ $116.4 (18)$ $119.41 (16)$ $116.2 (18)$ $118.0 (19)$ $118.39 (18)$ $119.2 (2)$ $122.35 (18)$ $117.67 (19)$ $121.84 (18)$ $120.49 (18)$ $119.5 (2)$ 120.3 120.3 $116.6 (2)$	06-011-N3 06-012-013 06-012-014 06-012-014 06-012-015 013-012-015 014-012-015 012-013-H13A 012-013-H13B 012-013-H13B 012-013-H13C 013A-013-H13C 013B-013-H13C 013B-013-H13C 012-014-H14A 012-014-H14B 012-014-H14B 012-014-H14C 014A-014-H14C 014B-014-H14C 012-015-H15A	110.28 (17) 109.8 (2) 109.9 (2) 113.6 (2) 101.66 (17) 110.2 (2) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5
C4-O2-H20 $C10-O4-H40$ $C11-O6-C12$ $C7-N1-N2$ $C8-N2-N1$ $C8-N2-H2n$ $N1-N2-H2n$ $C11-N3-C9$ $C11-N3-H3n$ $C9-N3-H3n$ $C6-C1-C2$ $C6-C1-C7$ $C2-C1-C7$ $O1-C2-C3$ $O1-C2-C1$ $C3-C2-C1$ $C3-C2-C1$ $C2-C3-C4$ $C2-C3-H3$ $C4-C3-H3$ $O2-C4-C3$ $O2-C4-C5$	108 (2) $109 (2)$ $122.20 (16)$ $114.81 (18)$ $121.30 (18)$ $122.1 (18)$ $116.4 (18)$ $119.41 (16)$ $116.2 (18)$ $118.0 (19)$ $118.39 (18)$ $119.2 (2)$ $122.35 (18)$ $117.67 (19)$ $121.84 (18)$ $120.49 (18)$ $119.5 (2)$ 120.3 120.3 $116.6 (2)$ $121.99 (18)$	06-011-N3 06-012-013 06-012-014 06-012-014 06-012-015 013-012-015 014-012-015 012-013-113A 012-013-113B 113A-013-113B 113A-013-113C 113B-013-113C 113B-013-113C 113B-013-113C 113B-013-113C 113B-013-113C 113B-013-113C 113B-013-113C 113B-013-113C 113B-013-113C 113B-013-113C 113B-013-113C 113B-013-113C 113B-013-113C 113B-013-113C 012-014-114B 114A-014-114C 114B-014-114C 114B-014-114C 114B-014-114C 112-015-115B	110.28 (17) 109.8 (2) 109.9 (2) 113.6 (2) 101.66 (17) 110.2 (2) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5
C4-O2-H20 $C10-O4-H40$ $C11-O6-C12$ $C7-N1-N2$ $C8-N2-N1$ $C8-N2-H2n$ $N1-N2-H2n$ $C11-N3-C9$ $C11-N3-H3n$ $C9-N3-H3n$ $C6-C1-C2$ $C6-C1-C7$ $C2-C1-C7$ $O1-C2-C3$ $O1-C2-C1$ $C3-C2-C1$ $C2-C3-C4$ $C2-C3-H3$ $O2-C4-C3$ $O2-C4-C5$ $C3-C4-C5$	108 (2) $109 (2)$ $122.20 (16)$ $114.81 (18)$ $121.30 (18)$ $122.1 (18)$ $116.4 (18)$ $119.41 (16)$ $116.2 (18)$ $118.0 (19)$ $118.39 (18)$ $119.2 (2)$ $122.35 (18)$ $117.67 (19)$ $121.84 (18)$ $120.49 (18)$ $119.5 (2)$ 120.3 120.3 $116.6 (2)$ $121.43 (18)$	06-011-N3 06-012-013 06-012-014 06-012-014 06-012-015 013-012-015 014-012-015 012-013-113A 012-013-113B 113A-013-113B 113A-013-113C 113B-013-112C 113B-013-112C 113B-013-112C 113B-013-	110.28 (17) 109.8 (2) 109.9 (2) 113.6 (2) 101.66 (17) 110.2 (2) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5

С6—С5—Н5	120.6	H15A—C15—H15C	109.5
С4—С5—Н5	120.6	H15B—C15—H15C	109.5
C5—C6—C1	121.4 (2)	C18—O7—C16	0(3)
С5—С6—Н6	119.3	С18—О7—Н7о	114 (3)
С1—С6—Н6	119.3	С16—О7—Н7о	114 (3)
N1—C7—C1	120.9 (2)	O7—C16—C17	112.6 (7)
N1—C7—H7	119.6	O7—C16—H16A	109.1
С1—С7—Н7	119.6	C17—C16—H16A	109.1
O3—C8—N2	124.15 (19)	O7—C16—H16B	109.1
O3—C8—C9	123.30 (18)	С17—С16—Н16В	109.1
N2—C8—C9	112.44 (18)	H16A—C16—H16B	107.8
N3—C9—C8	112.03 (17)	O7—C18—C19	112.6 (15)
N3—C9—C10	109.30 (16)	O7—C18—H18A	109.1
C8—C9—C10	109.66 (16)	C19—C18—H18A	109.1
N3—C9—H9	108.6	O7—C18—H18B	109.1
С8—С9—Н9	108.6	C19—C18—H18B	109.1
С10—С9—Н9	108.6	H18A—C18—H18B	107.8
O4—C10—C9	112.07 (18)	C18—C19—H19A	109.5
O4—C10—H10A	109.2	C18—C19—H19B	109.5
C9—C10—H10A	109.2	H19A—C19—H19B	109.5
O4—C10—H10B	109.2	С18—С19—Н19С	109.5
С9—С10—Н10В	109.2	H19A—C19—H19C	109.5
H10A—C10—H10B	107.9	H19B—C19—H19C	109.5
O5—C11—O6	126.34 (19)		
C7—N1—N2—C8	169.49 (18)	N1—N2—C8—C9	176.62 (17)
C6—C1—C2—O1	179.01 (19)	C11—N3—C9—C8	-78.9 (2)
C7—C1—C2—O1	-2.6 (3)	C11—N3—C9—C10	159.32 (19)
C6—C1—C2—C3	-0.6 (3)	O3—C8—C9—N3	-33.9 (3)
C7—C1—C2—C3	177.78 (19)	N2—C8—C9—N3	149.72 (17)
O1—C2—C3—C4	178.56 (18)	O3—C8—C9—C10	87.7 (2)
C1—C2—C3—C4	-1.8 (3)	N2-C8-C9-C10	-88.7 (2)
C2—C3—C4—O2	-176.30 (18)	N3—C9—C10—O4	58.1 (2)
C2—C3—C4—C5	2.7 (3)	C8—C9—C10—O4	-65.0 (2)
O2—C4—C5—C6	177.85 (19)	C12—O6—C11—O5	-9.2 (4)
C3—C4—C5—C6	-1.1 (3)	C12—O6—C11—N3	172.7 (2)
C4—C5—C6—C1	-1.5 (3)	C9—N3—C11—O5	12.9 (4)
C2—C1—C6—C5	2.3 (3)	C9—N3—C11—O6	-168.91 (18)
C7—C1—C6—C5	-176.19 (19)	C11—O6—C12—C13	69.9 (3)
N2—N1—C7—C1	-179.27 (17)	C11	-55.8 (3)
C6—C1—C7—N1	170.21 (19)	C11—O6—C12—C15	-173.4 (2)
C2-C1-C7-N1	-8.2 (3)	C18—O7—C16—C17	-98 (83)
N1—N2—C8—O3	0.3 (3)	C16—O7—C18—C19	52 (82)
Hydrogen-bond geometry (Å, °)			

D—H··· A	<i>D</i> —H	$H \cdots A$	$D \cdots A$	D—H··· A
O1—H10···N1	0.86 (3)	1.89 (3)	2.643 (3)	147 (3)
N2—H2n···O3 ⁱ	0.86 (3)	1.91 (2)	2.760 (2)	171 (2)

O2—H2o···O5 ⁱⁱ	0.83 (3)	1.86 (3)	2.669 (3)	165 (3)
N3—H3n····O4 ⁱⁱⁱ	0.86 (3)	2.08 (3)	2.926 (3)	173 (2)
O4—H4o····O7 ^{iv}	0.83 (1)	1.94 (2)	2.761 (3)	167 (3)
O7—H7o···O2 ^v	0.84 (1)	2.05 (2)	2.858 (2)	162 (4)

Symmetry codes: (i) -x+1/2, y+1/2, -z+2; (ii) -x, y, -z+2; (iii) -x+1, y, -z+2; (iv) -x+1/2, y+1/2, -z+1; (v) -x, y, -z+1.

Fig. 1

Fig. 2

